
Drag diagrams computed by an integral method are shown in Fig. 3 for a permeable plate 
whose boundary layer is turbulized for r = I06. It is seen that as the concentration c w of 
the delivered solution increases in each boundary layer section, the effect of reducing 
the friction first grows and then when the quantity c e exceeds the optimal macromolecule con- 
centration, starts to be reduced. The joint influence of injection and polymer admixtures 
permits obtaining a substantial reduction in turbulent friction even for very large values 
of Vw/U ~ . 

Notation. u 6 is the free stream velocity; u~ is the dynamic velocity; ~w is the tangen- 
tial stress on the wall; qw is the diffusion impurity flux through the permeable wall; v and 
v t are molecular and turbulent viscosity coefficients; c w is the impurity concentration on 
the wall; ~ and 6v are boundary layer and viscous sublayer thicknesses; Sc and SEt are the 
molecular and turbulent Schmidt numbers; z and y are the longitudinal and transverse coordi- 
nates and cf is the local friction drag coefficient. 
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MATHEMATICAL MODELLING OF NONISOTHERMAL TURBULENT ONE- AND TWO-PHASE 

SWIRLING FLOWS 

V. V. Novomlinskii UDC 532.529 

A mathematical model is developed and realized numerically for turbulent gas- 
dispersed nonisothermal swirling flows on the basis of Navier-Stokes type equa- 
tions by using a modified k--E turbulence model. Corrections taking account of 
the influence of particles and the flow swirling on k, E are introduced into 
these latter. A finite-difference method of controlled volume is used to solve 
the equations. Computations are compared with experimental data on swirling 
single-phase flows in a cylindrical channel. Data are obtained about the influ- 
ence.of the nonisothermy on the length of the recirculation zone. 

Introduction. Two-phase (gas-solid or liquid particles) turbulent high-temperature 
swirling flows are utilized extensively in plasma technology, plasma chemistry, and powder 
metallurgy. The investigation of such flows and the subsequent development of existing 
technologies on this basis can be carried out, in particular, by constructing numerical 
models of these processes and executing numerical experiments by using such models, as would 
permit determination of the most important flow characteristics, the velocity, phase temper- 
atures, powder concentration, etc. 

Different turbulent two-phase jet flows, computation methods, and results of numerical 
modelling are presented in [i]. The extensively known Prandtl mixing-path model modified 
by G. N. Abramovich for gas-dispersed flows, is used as the closure model. 

Turbulent swirling flows are utilized for intensification of heat and mass transfer 
processes in different apparatus as well as for electric arc stabilization in plasmatrons. 
It is known that strongly swirling flows are characterized by the occurrence of recirculation 
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zones in the form of near-axis toroidal vortices. Various factors, in particular, the config- 
uration of the flow domain boundaries, the degree of nonisothermy, the intenseness of the 
initial swirling, as well as the degree of flow charging by particles in the case of gas- 
dispersed flows affect the location and size of these zones. 

Results of a theoretical and experimental investigation of weakly and strongly swirling 
flows by using different turbulence models are presented in [i]. 

Formulation~ Method of Solution~ and Results of Computations. The hypothesis of inter- 
penetrating, interacting continuums is used in this paper to model two-phase flows. Turbu- 
lent subsonic gas flows with particles of 20-60 Dm size whose bulk concentration is 7 ~ 10 -3 
are examined. It is shown in [i] that for ~ < 2o10 -2 particle interaction with each other 
can be neglected. Phase dispersion is simulated by a set of solid or liquid spheres of 
identical dimensions, where the intrinsic particle volume is not taken into account. The 
density of the dispersed phase O = pp~ is comparable to the density p of the carrying gas. 
For inert particies (p/pp ~ i) all t~e forces acting on a single particle, except the drag 
force, are ordinarily neglected. The two-phase flow is assumed substantially nonequilibri- 
um. The particle turbulent diffusion process can be neglected for two-phase flows with 
inert particles and small time, this is given a foundation in detail in [2]. Known empirical 
relationships taking account of the inertia and rarefaction of the flow as well as the high 
temperature drops on the gas-particle boundary [3, 4] are used for the drag and heat transfer 
coefficients of a single particle. Particle heating is assumed gradient-free and radiant 
heat transfer is neglected. 

Turbulence is described by using a two-parameter k-g closure model. Applying the Fried- 
man-Keller procedure, additional source terms can be obtained in the k and g-equations that 
reflect the influence of the dispersed phase on the fluctuation energy k and the specific 
velocity of dissipation of the fluctuation energy g [5]. It was assumed in the derivation 
of these terms that the dispersed phase can be considered as a continuous medium in the 
L k scales, for large-scale energy carrying vortices, and in the Lg scales for fine-scale 
dissipative vortices. The mean distance between particles is L c ~ ~-z/a dp and much greater 
than Lg ~ LoRe -a/4 in many practical cases and much less than L k ~ L0, where L 0 is the char- 
acteristic dimension of the flow domain and d~ is the particle diameter. This makes formal 
application of the Friedman-Keller procedure zmpossible for obtaining the source term S~n. 
In the case L c~ Ir E and ~ << I an additional source term for the e-equation of Sgp can 
neglected [2]. 

It is known that the influence of flow swirling on the fluctuation characteristics 
is complete in nature. Cases of both turbulent fluctuation generation and suppression are 
possible under the action of flow rotation. The stability criterion of swirling flows to 
random perturbations was examined in [6] 

8 (=~/r) 
ar ~ o. 

It is asserted that upon compliance with this condition swirling suppresses turbulent veloci- 
ty fluctuations and the intensity of turbulence diminishes. 

No sufficiently adequate reality exists at this time for the turbulence model for swirl- 
ing flows. A new modification of the k-g turbulence model is proposed in this paper for 
the case of swirling flows that takes account of both turbulence and suppression of turbu- 
lence under the influence of swirling and going over to a standard k-g model upon damping 
of the swirling. The kind of component characterizing generation in the e-equations is 
changed. The turbulent viscosity ~t increases for additional turbulization under the action 
of swirling and Dt diminishes under the suppression of the turbulent velocity fluctuations. 
A change in Dt can be obtained by modifying the expression for c I. The generation term 
G equals the sum of G w and Gu,v, where G w is the generation due to the tangential velocity 
component w with strengthened influence of the moment, which is conformity with the gradient 
hypothesis can be represented as 

�9 a (~21r)  
< F ~ '  > = - - ~  Or ' 

where F r' is the fluctuating component of the centrifugal force. The term gu, v is genera- 
tion due to the u,v velocity components: 
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The increase (diminution) in Pt is achieved by diminution (increase) of the component 
ciGe/k in the equation for e. Using a simple analog for the Richardson number Ri in the 
form Ri = Gw/(Gu, v + G w) the quantity c I can be given as: 

cl = 1,44--c~Ri. 

Therefore, depending on the sign of the number Re the coefficient c I increases in the case 
of flows with turbulence suppression and diminishes for flows with turbulence intensifica- 
tion. The best correspondence with experimental data is obtained for c a ~ i, i.e., c I = 
1.44 - Ri. Comparing thecomputations by using the proposed model with other computations 
and experiments showed that the model with the correction for c I describes the flow charac- 

teristics sufficiently exactly [2]. 

Nonisothermal swirling one- and two-phase flows were investigated in this research. 
Equations of the type of the complete Navier-Stokes energy and continuity equations for 
averaged parameters in a cylindrical coordinate system under axial symmetry conditions were 
written for the gas phase. The gas density and particle parameter fluctuations were neglected 

in writing these equations: 
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Oz Or 

Ou Ou _ OP + ~ 0 divV+~Au--  
pu--~z + pv Or O---z 3 O---'z- 

2 div V 0~ -4- 2erz ~ + 2ezz Op~ 2 0 
- -  ~ Oz or Oz 3 O---z (pk) + S~,p; 
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The equations of the two-parameter model of turbulence appear as follows: 

p u - -  Ok Ok 1 0 Ih + ~ + 
"~z + pv Or" r O~ (~h 
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For additional source terms reflecting the influence of particles on the gas, we write the 

S . ~  = 0 ( u ,  - -  u) / '%; S~p = O ( %  - -  v ) / % ;  S , ~ ,  = @ (my - -  w)/%; 

0 rp 
Shp - -  ; )~dT; @ = %,p;; S~v = - - 2 k e / . ~ ; .  

TT 7" 

relationships 

Euler type equations [2] are used for the dispersed phase [2]: 

Ov~ Or; w~ 
OvuVr3z + OvV/or --0; v; ---O;- +uv  Oz r -- S~ 
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Auxiliary relationships are written in the form [2-4] 

XD = pvd~/189[#; f D - -  1 +0,15Re~/3 
- - - 1  + 3,82A ; A = i~/pcd,; 

,~ : x D  (l  _ R %  Oln xD ) - '  
0 Re----~ ; "c r = opd~/6 Nup; 

Nup -- Nupo __. 
l+3,42ANupo/Pr ' Nuvo=-20V~(Tv) ) + 

+ 0,6 Re~' 5 pr o, a3 (9~/P (Tp) ~ (Tv)) ~ 2; R% = 9dp ]u - -  up[/~. 

Profiles obtained experimentally~ or certain model profiles (for u, k, ~ ha 7, , h p 
homogenous, v, Vp equality to zero, w, Wp according to the law of rotation of a solid) were 
given at the entrance to the channel (nozzle exit). Symmetry conditions were given on the 
channel axis, and "soft" boundary conditions at the exit from the channel. Adhesion and 
isothermy conditions were realized on the wall while for k and e a modification of the Lamb 
and Bramhorst k-e model [7], proposed for near-wall flows, was selected, 

A Patankar (SIMPLE-procedure) [8] finite-difference controlled volume method was used 
to solve the Navier-Stokes type equations. The scheme of "against the flow" and the more 
accurate "degree" [8] were used to approximate the convective terms. The difference equa- 
tions obtained were solved by iteration and three-point factorization were used at each 
iteration. The so-called "checkerboard" mesh in which the values of u and v were determined 
at the half-nodes of the difference mesh was used to compute the flow field while the remain- 
ing quantities were determined at the integer nodes. The pressure was determined from the 
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Radial u, w profiles for strongly swirling single-phase 
flow in a pipe. 

difference analog of the continuity equation. The method of solution is described in detail 
in [8]. 

Experimental data and computations for anisothermal swirling air flow in a pipe are 
presented in [9, i0]. The Reynolds number varied between 5.3.10 ~ and 1.5.105 while the 
geometric angle of the swirling ~H took on the values 0, 38, 45, 60 and 70 ~ . Comparing the 
experimental and computed data shows that the model with the correction for c z more accurat- 
ely predicts the averaged (u, w) and fluctuating (k, e) parameters of strongly swirling 
flow in a channel. 

Dimensionless radial u and w profiles are shown in Fig. 1 for ~H = 70~ obtained experi- 
mentally and in computations using two models (points are experiment [9], dashed lines are 
the computation in [10] and solid lines are computation using the k-g model with the correc- 

tion for Cl). 

The next part of the computation was performed to study propagation of a "hot" swirling 
air jet in a "cold" space. The purpose of the investigation is to determine the influence 
of the degree of nonisothermy ~ of the flow (where ~ = Tc/T~, T c is the initial jet tempera- 
ture, and T~ = 300 K is the temperature of surrounding space) and the initial swirling level 
w 0 on the size of the recirculation zone that occurs in a strongly swirling jet (Fig. 2). 
In the case of the outflow of a "hot" jet (~ = 2; 3.3) the length of the recirculation zone 
diminishes substantially, where the critical value of w 0 for which a reverse flow is formed 

increases. 

The swirling turbulent air flow with nickel particles (dp = 20 ~m) in a cylindrical 
channel was also investigated numerically. The ratio between-the particle and gas mass 
flow rates was one. The presence of an inert phase in the swirling flow resulted in growth 
of the impurity concentration at the channel wall, diminution of the recirculation zone 
length in strongly swirling flows, deformation of the radial profiles of all the parameters. 
The presence of an initially unswirling disperse phase suppresses the recirculation zone, 
as the computations showed. Radial u, Up profiles are shown in Fig. 3 for a strongly swirling 
flow in a pipe [curves i) gas velocity u for two-phase flow; 2) Up in this same case; 3) gas 
velocity for a single-phase swirling flow]. 

Conclusion. The model developed for two-phase turbulent nonisothermal flows with parti- 
cles several tens of microns in size permits determination of the flow parameters during 
plasma technology processes. The model is approved according to known experimental data. 
Results are presented on the influence of swirling intensity and degree of nonisothermy 
on the size of the recirculation zone. 

Notation. k is the kinetic energy of turbulent pulsations; e is the specific rate 
of dissipation of fluctuation energy; 7 is bulk particle concentration; 0 is disperse phase 
density; pp is density of particle substance; p is gas density; L k, L e are scales of energy 
carrying and dissipative turbulence vortices, respectively; L c is the mean distance between 
particles; L 0 is the characteristic dimension of the flow domain; dp is the particle diam- 
eter; Re, Pr are the Reynolds and Prandtl numbers; Sup, Svp, Swp, Skp, Sep, Shp are additional 
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Fig. 2. Dependence of the recirculation zone length L R on the 
initial swirling level w 0 and the degree of nonisothermy a: 
i) ~ = i; 2) 2; 3) 3.3. 

Fig. 3. Radial u, Up profiles for strongly swirling two-phase 
flow in a pipe. 

source terms reflecting the influence of the disperse phase; u, v, w-z, r, ~ are average 
gas velocity components in a cylindrical coordinate system; G, Gu, v, G w is the generation 
term in the turbulence model and its components; c D, c l, c 2, Ok, os are empirical quantities 
of the k--E model; Ri is the Richardson number; Pt, P, ~s are turbulent, laminar, and effec- 
tive viscosities; p, ~, P is the gas density, heat conductivity, and pressure; h is the 
gas enthalpy; Pr t is the turbulent Prandtl number; Up, v , w , h are velocity and enthalpy P P P 
components of the disperse phase; T, Tp are the gas and particle temperatures; XD, ~T are 
the dynamic relaxation time and the coefficient of thermal particle relaxation in the flow; 
fD is the correction to the particle flow mode instability; c is the speed of sound; Rep, 
Nup are the Reynolds and Nusselt numbers for particles; ~H is the geometric angle of swirl; 

is the degree of flow nonisothermy; and L R is the recirculation zone length. 
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